Enhanced copper surfaces developed to improve health and safety

Tuesday, 18 January, 2022

Copper has long been used to fight different strains of bacteria, including the commonly found golden staph, because the ions released from the metal’s surface are toxic to bacterial cells. However, this process can be slow when standard copper is used, and significant efforts are underway by researchers worldwide to speed it up. A new copper surface that reportedly kills bacteria more than 100 times faster and more effectively than standard copper could help combat the threat of antibiotic-resistant superbugs. The new copper product is the result of collaborative research by RMIT University and CSIRO, with findings published in Biomaterials.

Distinguished Professor Ma Qian from RMIT University noted that a standard copper surface will kill about 97% of golden staph within four hours. “Incredibly, when we placed golden staph bacteria on our specially designed copper surface, it destroyed more than 99.99% of the cells in just two minutes. So not only is it more effective, it’s 120 times faster,” Professor Qian said. Qian added that these results were achieved without the assistance of any drug, with the copper structure showing itself to be remarkably potent for such a common material. Researchers believe there could be a huge range of applications for the new material once further developed, including antimicrobial door handles and other touch surfaces in schools, hospitals, homes and public transport, as well as filters in antimicrobial respirators or air ventilation systems, and in face masks.

Researchers are now investigating the enhanced copper’s effectiveness against SARS-COV-2, the virus that causes COVID-19, including assessing 3D-printed samples. Other studies suggest copper may be highly effective against the virus, leading the US Environmental Protection Agency to officially approve copper surfaces for antiviral uses earlier this year. Study lead author Dr Jackson Leigh Smith said the copper’s unique porous structure was key to its effectiveness as a rapid bacteria killer. A special copper mould casting process was used to make the alloy, arranging copper and manganese atoms into specific formations. The manganese atoms were then removed from the alloy using a cheap and scalable chemical process called ‘dealloying’, leaving pure copper full of tiny microscale and nanoscale cavities in its surface.

“Our copper is composed of comb-like microscale cavities and within each tooth of that comb structure are much smaller nanoscale cavities; it has a massive active surface area. The pattern also makes the surface super hydrophilic, or water-loving, so that water lies on it as a flat film rather than as droplets. The hydrophilic effect means bacterial cells struggle to hold their form as they are stretched by the surface nanostructure, while the porous pattern allows copper ions to release faster,” Dr Smith said. These combined effects not only cause structural degradation of bacterial cells, making them more vulnerable to the poisonous copper ions, but also facilitate the uptake of copper ions into the bacterial cells, explained Dr Smith. This combination of effects then results in the accelerated elimination of bacteria.

Images magnified 120,000 times under a scanning electron microscope show golden staph bacteria cells after two minutes on a) polished stainless steel, b) polished copper and in c) and d), the team’s micro-nano copper surface. Image credit: RMIT University

Doctor Daniel Liang of CSIRO said researchers across the world are looking to develop new medical materials and devices that could help reduce the rise of antibiotic-resistant superbugs by reducing the need for antibiotics. “Drug-resistant infections are on the rise, and with limited new antibiotics coming onto the market, the development of materials resistant to bacteria will likely play an important role in helping address the problem. This new copper product offers a promising and affordable option to fighting superbugs, and is just one example of CSIRO’s work in helping to address the growing risk of antibiotic resistance,” Dr Liang said.

This study was initiated through an RMIT-CSIRO PhD program and was subsequently co-funded by the CASS Foundation Melbourne, Australia. The innovative process now has patents pending in the USA, China and Australia.

Top image credit: ©stock.adobe.com/au/Rawpixel.com

Related Products

JetBlack Safety cleaning booth

JetBlack Safety cleaning booths are designed to reduce dust on people, their clothing and their...

ZeoMed biohazard spill kits

The ZeoMed biohazard kits from Clean Stream Technologies are designed to provide a hygienic...

HEMCO Softwall Clean Rooms

The Softwall Clean Rooms from HEMCO Coporation feature a structural framework made of aircraft...


  • All content Copyright © 2022 Westwick-Farrow Pty Ltd